Cost-sensitive Boosting for Concept Drift

نویسندگان

  • Ashok Venkatesan
  • Narayanan C. Krishnan
  • Sethuraman Panchanathan
چکیده

Concept drift is a phenomenon typically experienced when data distributions change continuously over a period of time. In this paper we propose a cost-sensitive boosting approach for learning under concept drift. The proposed methodology estimates relevance costs of ‘old’ data samples w.r.t. to ‘newer’ samples and integrates it into the boosting process. We experiment this methodology on usenet1 and accelerometer based activity gesture datasets. The results demonstrate that the cost-sensitive boosting approach significantly improves classification performance over existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting classifiers for drifting concepts

This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the...

متن کامل

Dynamic Cost-sensitive Ensemble Classification based on Extreme Learning Machine for Mining Imbalanced Massive Data Streams

In order to lower the classification cost and improve the performance of the classifier, this paper proposes the approach of the dynamic cost-sensitive ensemble classification based on extreme learning machine for imbalanced massive data streams (DCECIMDS). Firstly, this paper gives the method of concept drifts detection by extracting the attributive characters of imbalanced massive data stream...

متن کامل

New Ensemble Method for Classification of Data Streams

Classification of data streams has become an important area of data mining, as the number of applications facing these challenges increases. In this paper, we propose a new ensemble learning method for data stream classification in presence of concept drift. Our method is capable of detecting changes and adapting to new concepts which appears in the stream. Data stream classification; concept d...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Fast and Light Boosting for Adaptive Mining of Data Streams

Supporting continuous mining queries on data streams requires algorithms that (i) are fast, (ii) make light demands on memory resources, and (iii) are easily to adapt to concept drift. We propose a novel boosting ensemble method that achieves these objectives. The technique is based on a dynamic sample-weight assignment scheme that achieves the accuracy of traditional boosting without requiring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010